Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge.
نویسندگان
چکیده
Efficient transcription from the human immunodeficiency virus (HIV) promoter depends on binding of the viral regulatory protein Tat to a cis-acting RNA regulatory element, TAR. Tat binds at a trinucleotide bulge located near the apex of the TAR stem-loop structure. An essential feature of Tat-TAR interaction is that the protein induces a conformational change in TAR that repositions the functional groups on the bases and the phosphate backbone that are critical for specific intermolecular recognition of TAR RNA. We have previously determined a high resolution structure for the bound form of TAR RNA using heteronuclear NMR. Here, we describe a high resolution structure of the free TAR RNA based on 871 experimentally determined restraints. In the free TAR RNA, bulged residues U23 and C24 are stacked within the helix, while U25 is looped out. This creates a major distortion of the phosphate backbone between C24 and G26. In contrast, in the bound TAR RNA, each of the three residues from the bulge are looped out of the helix and U23 is drawn into proximity with G26 through contacts with an arginine residue that is inserted between the two bases. Thus, TAR RNA undergoes a transition from a structure with an open and accessible major groove to a much more tightly packed structure that is folded around basic side chains emanating from the Tat protein.
منابع مشابه
Two distinct nuclear transcription . factors recogmze loop and bulge residues of the HIV - 1 TAR RNA hairpin
Transcriptional activation by the HIV-1 Tat protein requires specific residues in the hexanucleotide loop and trinucleotide bulge of the TAR RNA stem-loop structure found in the 5'-untranslated leader of all viral transcripts. Tat directly contacts residue U 22 in the bulge and is thought to act in concert with cellular factors bound to the loop. We find that HeLa nuclear extracts contain two s...
متن کاملTwo distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin.
Transcriptional activation by the HIV-1 Tat protein requires specific residues in the hexanucleotide loop and trinucleotide bulge of the TAR RNA stem-loop structure found in the 5'-untranslated leader of all viral transcripts. Tat directly contacts residue U22 in the bulge and is thought to act in concert with cellular factors bound to the loop. We find that HeLa nuclear extracts contain two sp...
متن کاملConstructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDC...
متن کاملConformation of the TAR RNA-arginine complex by NMR spectroscopy.
The messenger RNAs of human immunodeficiency virus-1 (HIV-1) have an RNA hairpin structure, TAR, at their 5' ends that contains a six-nucleotide loop and a three-nucleotide bulge. The conformations of TAR RNA and of TAR with an arginine analog specifically bound at the binding site for the viral protein, Tat, were characterized by nuclear magnetic resonance (NMR) spectroscopy. Upon arginine bin...
متن کاملEssential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein
The pharmacological disruption of the interaction between the HIV Tat protein and its cognate transactivation response RNA (TAR) would generate novel anti-viral drugs with a low susceptibility to drug resistance, but efforts to discover ligands with sufficient potency to warrant pharmaceutical development have been unsuccessful. We have previously described a family of structurally constrained ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 24 20 شماره
صفحات -
تاریخ انتشار 1996